
Citation: Song, W.; Guo, H.; Gu, Y.;

Zhou, J.; Sui, J.; Chen, B.; Huang, W.;

Zou, X. Power Compression and

Phase Analysis of GaN HEMT for

Microwave Receiver Protection.

Electronics 2022, 11, 1958. https://

doi.org/10.3390/electronics11131958

Academic Editors: Kai Fu and

Houqiang Fu

Received: 25 May 2022

Accepted: 13 June 2022

Published: 22 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Power Compression and Phase Analysis of GaN HEMT for
Microwave Receiver Protection
Wenhan Song 1,2,3, Haowen Guo 1, Yitian Gu 1,2,3, Junmin Zhou 1,2,3, Jin Sui 1,2,3, Baile Chen 1 , Wei Huang 4

and Xinbo Zou 1,5,*

1 School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China;
songwh@shanghaitech.edu.cn (W.S.); guohw@shanghaitech.edu.cn (H.G.); guyt@shanghaitech.edu.cn (Y.G.);
zhoujm@shanghaitech.edu.cn (J.Z.); suijin@shanghaitech.edu.cn (J.S.); chenbl@shanghaitech.edu.cn (B.C.)

2 Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences,
Shanghai 200050, China

3 University of Chinese Academy of Sciences, Beijing 100049, China
4 Institute of Microelectronics, Fudan University, Shanghai 200433, China; eehuangw@fudan.edu.cn
5 Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, Shanghai 200031, China
* Correspondence: zouxb@shanghaitech.edu.cn

Abstract: This paper reports a high-performance microwave receiver protector (RP) based on a single
gallium nitride (GaN) high electron mobility transistor (HEMT) at an operation frequency of 30 to
3000 MHz. The HEMT-based RP exhibits multi features: high power compression, constant output
power, tunable threshold power level, and insensitivity to frequency variation. With a low drain
voltage (Vds) of 3 V, constant output power of 9.9 dBm was acquired for input power over its threshold
power of 3.2 dBm. Power compression of 13.3 dB was achieved at the input power of Pin = 20 dBm.
In addition, adjustable threshold power level Pth could be obtained by merely tuning drain voltage.
Transducer gain measurement results were employed to explain the occurrence of output power
saturation. Relatively higher Pth was linked to wider gate voltage swing which extended the linear
region of the Pout-Pin characteristic. In addition, the GaN HEMT’s power compression capability
shows great immunity to frequency variation, which is promising for protecting sensitive receiver
components at both low and high frequencies. Finally, the phase shift of the GaN HEMT RP at high
input power was measured and analyzed by the nonlinear behaviors of input capacitance Cgs.

Keywords: gallium nitride (GaN); high electron mobility transistor (HEMT); microwave receiver
protector (RP); power compression; phase shift

1. Introduction

Receiver protectors (RPs) are widely used to provide protection to radio frequency
(RF) and microwave receivers and components, such as low noise amplifiers (LNAs) [1,2]
and analog-to-digital converters (ADCs) [3,4]. An RP allows input power below a certain
value to pass through ideally without loss, and attenuating input signal strength when it
exceeds the threshold. A number of device technologies have been developed to achieve
RF and microwave RPs, including Schottky barrier diodes (SBDs) [5–7], p-i-n diodes [3,8,9],
and transistors [10–12]. Employing a steep-mesa technology, a gallium nitride (GaN) SBD
based RP demonstrated a low on-resistance (RON) and a power compression of 3.3 dB with
a corresponding input power of 20 dBm at 2 GHz [7]. A low insertion loss of 0.3 dB has
also been reported for a diamond diode based RP at an operation frequency of 1 GHz [9].
However, for a diode-based RP, typically a tradeoff often has to be made between Coff
and Ron [7–9]. Although diode-based RPs have made steady progress, they still face
some important challenges, such as insufficient power compression, inadequacy in tuning
their threshold power level (the input power with 1-dB gain compression), and sensitivity
to frequency change. Some attempts, including reverse-biased configurations, stacked
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antiparallel configurations, etc. have been enacted to mitigate the issues [3,13]; however,
most of the efforts required complex circuits to work with. Transistors have been regarded
as another viable option for RF RPs. The basic principle of transistor-based RPs is to operate
the transistors in their saturation region to limit the output power [10,14,15]. Owing to
their saturated output power, RPs formed by transistors possess the advantages of constant
output power and outstanding power compression capability.

AlGaN/GaN-based high electron mobility transistors (HEMTs) with embedded 2-
dimension electron gas (2DEG) have been widely used in power amplifiers (PAs) [16,17],
RF switches [18,19] and LNAs with extremely short recovery time [20,21], due to superior
properties such as high power density at high frequencies, high breakdown voltages and
large carrier density and mobility [22–24].

In this paper, we demonstrated a microwave RP based on a single GaN HEMT on
Silicon carbide (SiC) substrate. The HEMT receiver protector offers a certain gain for the
small input signal and attenuates input signal strength beyond the threshold power into
a constant output power. The threshold power could be well adjusted by varying the
bias. It is also demonstrated that the power reduction capability was hardly sensitive to
working frequency. Moreover, the phase shift—a critical issue when an RP was applied in
high performance phased-array receiver front end [25]—was investigated and analyzed
by the small RF signal measurements. The results paved a solid path for a single GaN
HEMT to form an RP with high power compression, threshold power adjustability, and
frequency stability.

2. Materials and Methods

The GaN-based HEMT used in this study was grown and fabricated on a SiC substrate
as shown in Figure 1a. The epitaxial structure includes an Al0.25Ga0.75N barrier layer, a
GaN layer buffer layer, and an AlN nucleation layer. The fabrication process of the HEMT
started with mesa isolation, which was completed in Inductive Coupled Plasma Reactive
Ion Etching (ICP-RIE) and wet etching in 5% TMMA at 50 ◦C. Then, the ohmic contact was
formed by depositing Ti/Al/Ni/Au (20/150/50/80 nm), followed by annealing at 850 ◦C
for 45 s. Finally, a Ni/Au (50/150 nm) Schottky metal was evaporated as the gate and
interconnection. The gate terminal was fabricated into a rectangular shape with its length
and width of 1.2 µm and 100 µm, respectively, and the distances between gate to source
and to drain were 1.5 µm and 2 µm (Lg = 1.2 µm, Lgs = 1.5 µm, Lgd = 2 µm, Wg = 100 µm).
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Figure 1. (a) Micrographs of GaN HEMT grown and fabricated on SiC with GSG test module; (b) the
test setup of this HEMT RP experiment diagram.

The setup shown in Figure 1b was used for power compression measurements of
the GaN HEMT RP. To investigate the power limiting performance of the GaN HEMT at
various frequencies, an on-wafer GaN HEMT measurement was conducted without being
constrained by the matching network. The input RF signal which was generated by the
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signal generator (Rohde & Schwarz SMA100B) was injected into the gate using a bias-tee.
The output RF signal was extracted from the drain terminal using a spectrum analyzer.
To protect the spectrum analyzer from being overdriven, a 30 dB attenuator was used.
Power-dependent measurements at various DC bias voltages and different frequencies
were carried out with the aid of a computer based controller. The phase shift derived from
the reference value at Pin = −20 dBm was measured by a Vector Network Analyzer (VNA)
(Keysight ENA5080A).

3. Results and Discussion
3.1. DC Characteristic

Figure 2a shows the transfer characteristics of the GaN HEMT, with a peak DC
transconductance (gm) of 197 mS/mm obtained at Vgs/Vds = −1/3 V. The threshold
voltage Vth was determined to be −1.8 V, extracted from the linear extrapolation of the
Ids-Vgs curve. Figure 2b depicts the output characteristics of the GaN HEMT, showing
saturated drain current density (Idsat) of 667 mA/mm at Vgs = 4 V. The slight drop of the
drain current during relatively high drain voltage with Vgs >1 V is due to the self-heating
effect (SHE) [26]. Under the field strength of 0.5 MV/cm, the gate leakage current density
of this GaN HEMT was measured to be 1.95 × 10−3 mA/mm, which is much smaller than
the typical gate breakdown standard of 1 mA/mm [27,28], indicating a Vgd breakdown
voltage higher than 100 V.
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Figure 2. (a) Transfer characteristics at Vds = 3 V; (b) output characteristics as Vgs increases from
−3 V to 4 V with a step of 1 V.

3.2. High Power Compression of the GaN HEMT RP

Figure 3a presents representative output power (Pout) as a function of input power.
When the input power was low, the receiver protector offered a fixed gain of 2.9 dB. The
results show that Pout increased linearly as injected power was enhanced from −20 dBm
to 3.2 dBm, with a fixed gain of 2.9 dB rather than insertion loss typically observed in a
diode-based RP. With an input power of 3.2 dBm, a gain reduction of 1 dB was observed.
When the input power was further enhanced, the output power began to saturate and was
clamped at 9.9 dBm as shown in Figure 3a. The input power level could only reach 21 dBm
due to the short length of the Lgd (2 microns), and it could be further improved by some
advanced processing technologies, such as a metal-insulator-semiconductor (MIS) HEMT
with a gate dielectric [29] or structures with surface passivation [30].
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(b) power compression as a function of Pin; (c) comparison of the power compression between this
single GaN HEMT and diode–based RPs in the literatures.

In the shaded area of Figure 3b, the power compression as a function of input power
could be well fitted by a linear relationship with a slope of 1 dB per 1dB, which indicated a
constant output power. The improvement of the power compression of this GaN HEMT
RP was at the expense of DC power consumption.

The GaN HEMT RP in this work presented a better power limiting capability than
diode-based RPs reported in the literature [7,31,32]. As shown in Figure 3c, when the
injection power was 17 dB higher than individual threshold power levels, the GaN HEMT
RP had 2~4 dB more power compression than those diode-base RPs. It was attributed to the
saturated output power of the GaN HEMT, while the diode-based RP cannot sufficiently
attenuate the input power due to its non-zero on-resistance (Ron) at high input power [33].
Moreover, there was a tradeoff between high power compression and circuit complexity
for a diode based RP [34]. The high power compression, as shown in Figure 3b, was
challenging to realize for a single-stage diode based RP [3,33]. Therefore, increasing the
number of stages was often used to achieve a constant output power at a large input signal,
which would increase the size and complexity of the diode based RP circuit. Whereas, for
the GaN HEMT-based RP, the circuit complexity only came from the bias circuit.

3.3. Tunable Threshold of the GaN HEMT RP

Figure 4a shows the relationship between the output power and the input power of
the GaN HEMT RP at Vgs = −1 V (working frequency of 3 GHz), with three different drain
voltages (3/5/10 V). When the Pin was below 3.5 dBm, uniform output power Pout was
acquired for all the bias conditions. However, when the Pin was beyond 7 dBm, apparent
divergence was spotted as Vds increased from 3 V to 5 V and 10 V. In addition to enhanced
output power with increasing Vds, the threshold power level Pth was also enhanced.
Threshold power levels Pth of 3.97/6.97/7.97 dBm were extracted from Vds = 3/5/10 V,
respectively, indicating that a higher drain bias may extend the linear region of an RP and
postpone the occurrence of power saturation.
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To investigate the dependence of the threshold power level Pth on the drain voltage
Vds, the transducer gain, which was measured at a low input power of −20 dBm, was
utilized. Figure 4b depicts transducer gain as a function of Vgs at the frequency of 3 GHz.
The gate voltage swing (GVS) [35] for a 9 dB transducer gain drop was determined to be
2.9 V, 4.4 V, and 5.2 V, for Vds = 3/5/10 V, respectively.

A relative wider GVS means the transistor could keep the transducer gain high for an
ample range of input power, as the input power was applied at the gate-source terminals.
Thus, with a wide GVS, the transistor could allow a broad range of input power through
without causing output power to be compressed, as shown in an extended linear region
of the Pout-Pin graph [Figure 4a]. As a result, a larger threshold power level Pth could
be obtained by merely increasing drain-source bias, and Pth can be easily electronically-
tuned by Vds, which contributes to the application of the HEMT based RP in a dynamic
environment and the precise protection of sensitive devices [13,36]. It should also be noted
that reducing the Lg of a GaN HEMT would enhance the non-uniformity of gm, which
could enable the lowering of Pth to protect more power-sensitive devices [37,38]. However,
for a p-i-n diode RP, the threshold power level was typically governed by the thickness of
the i-layer, and can hardly be adjusted once the device was manufactured [39].

3.4. Frequency Independent HEMT RP

Figure 5a reports the input and output power characteristics of the GaN HEMT based
RP at various working frequencies. The measured data show that at a given Vds, the
GaN HEMT based RP exhibited typically the same power compression capability and
threshold power level over a wide frequency range from 30 MHz to 3 GHz. For example, at
a Vds of 3 V, the maximum output power and Pth were extracted to be 9.86 ± 0.3 dBm and
2.81 ± 0.4 dBm, respectively, showing little divergence among various operation frequen-
cies from 30 MHz to 3 GHz. Whereas, Pth of a p-i-n based RP dropped rapidly as shifting
to low operation frequencies due to the transit time of carriers across the i-region is shorter
than the signal period time at a low frequency, e.g., Pth was reduced from 20 dBm at 3 GHz
to 9 dBm at 30 MHz for a silicon p-i-n diode [31].



Electronics 2022, 11, 1958 6 of 10Electronics 2022, 11, x FOR PEER REVIEW 6 of 10 
 

 

(a) (b) 

Figure 5. (a) Pout versus Pin with 30–3000 MHz; (b) transducer gain versus frequency at Vgs/Vds = −1/3 
V. 

Unlike p-i-n based RPs, this GaN HEMT based RP can maintain a good frequency 
response within its cut-off frequency (ft) of 11.28 GHz. The frequency-insensitive property 
could be attributed to the uniform transducer gain of the device over a wide operation 
frequency, as shown in Figure 5b, which shows the transducer gain as a function of fre-
quency for this GaN HEMT. In the range of 30–3000 MHz, an almost steady transducer 
gain was obtained for either a small RF signal (Pin = −20 dBm) or relatively large RF power 
(Pin = 5 dBm). As a result, almost identical output power could be expected in the linear 
region and saturation region of the device. Therefore, constant output power could be 
achieved at both small and large input power, resulting in a good broadband property 
without matching circuits. It should be noted that adding a matching network in a real 
application will not affect the characteristics of the GaN HEMT RP, such as high power 
compression and tunable threshold power. 

The frequency response of this HEMT RP is related to the current cut-off frequency 
(ft) and maximum oscillation frequency (fmax). It is noted that the device used in this study 
featured a gate length of 1.2 µm and held an ft of 11.28 GHz and an fmax of 22.35 GHz, 
respectively. It is expected that the frequency steadiness property could be extended to an 
even higher frequency on shrinking the gate length dimension [40–42]. Based on its fre-
quency-insensitive property, GaN HEMT could be used to protect sensitive components 
such as mixers in transmitters over a large frequency range. In addition, it paved a path 
to improving the frequency response without using multiple devices or auxiliary circuits 
[3]. 

3.5. Phase Shift Analysis of the HEMT RP 
Figure 6a illustrates the phase shift of GaN HEMT based RP with different Vds. The 

output phase was typically unchanged when the device was fed with a small input power 
lower than 0 dBm. However, as Pin increased, the phase dropped dramatically. Phase shift 
over 1 degree occurred at the Pin of 6.2/10.7/12.7 dBm for Vds = 3/5/10 V respectively.  
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Unlike p-i-n based RPs, this GaN HEMT based RP can maintain a good frequency
response within its cut-off frequency (ft) of 11.28 GHz. The frequency-insensitive property
could be attributed to the uniform transducer gain of the device over a wide operation
frequency, as shown in Figure 5b, which shows the transducer gain as a function of
frequency for this GaN HEMT. In the range of 30–3000 MHz, an almost steady transducer
gain was obtained for either a small RF signal (Pin = −20 dBm) or relatively large RF power
(Pin = 5 dBm). As a result, almost identical output power could be expected in the linear
region and saturation region of the device. Therefore, constant output power could be
achieved at both small and large input power, resulting in a good broadband property
without matching circuits. It should be noted that adding a matching network in a real
application will not affect the characteristics of the GaN HEMT RP, such as high power
compression and tunable threshold power.

The frequency response of this HEMT RP is related to the current cut-off frequency
(ft) and maximum oscillation frequency (fmax). It is noted that the device used in this study
featured a gate length of 1.2 µm and held an ft of 11.28 GHz and an fmax of 22.35 GHz,
respectively. It is expected that the frequency steadiness property could be extended to
an even higher frequency on shrinking the gate length dimension [40–42]. Based on its
frequency-insensitive property, GaN HEMT could be used to protect sensitive components
such as mixers in transmitters over a large frequency range. In addition, it paved a path to
improving the frequency response without using multiple devices or auxiliary circuits [3].

3.5. Phase Shift Analysis of the HEMT RP

Figure 6a illustrates the phase shift of GaN HEMT based RP with different Vds. The
output phase was typically unchanged when the device was fed with a small input power
lower than 0 dBm. However, as Pin increased, the phase dropped dramatically. Phase shift
over 1 degree occurred at the Pin of 6.2/10.7/12.7 dBm for Vds = 3/5/10 V respectively.



Electronics 2022, 11, 1958 7 of 10Electronics 2022, 11, x FOR PEER REVIEW 7 of 10 
 

 

(a) (b) (c) 

Figure 6. (a) Phase shift versus Pin with different Vds; (b) small RF signal equivalent circuit for GaN 
HEMT; (c) Cgs versus gate voltage. 

A small RF signal equivalent circuit model of this GaN HEMT is shown in Figure 6b 
[43,44]. This model consisted of an input resistance (Ri), an input (Cgs), output (Cds) and 
feedback (Cgd) capacitors, and a voltage controlled current source (gm·Vgsiexp(-jωτ)) where 
τ was transconductance delay. The RF power source is modeled by a voltage source and 
an internal impedance Zs = Rs. The output load is modeled by an admittance YL = GL. 

The feedback capacitor Cgd could be ignored due to the fact that it had small value. 
Therefore, the phase of output voltage could be computed as Equation (1):  

∠Vout= arctan ( −ωCgs Rs+Ri ) + arctan − ωCds
gds+GL

− ωτ. (1)

Since Cds (at fF level) is much smaller than the input capacitor Cgs, the phase of output 
voltage could be further simplified as Equation (2): 

∠Vout= arctan ( −ωCgs Rs+Ri ) −ωτ. (2)

Thus, the phase of output voltage could be regarded to be merely determined by the 
Cgs. Cgs could be extracted by the small RF signal equivalent circuit model shown in the 
dashed box in Figure 6b [44]. 

Figure 6c shows Cgs as a function of Vgs. For a given Vds, Cgs was unchanged around 
Vgs = −1 V, which corresponds to a relatively low input power. However, on increasing 
the input power, which could be interpreted as increasing the Vgs, a dramatically en-
hanced Cgs was observed. The increase of Cgs would cause a decrease in the phase of out-
put voltage according to Equation (2), resulting in a significant drop in the phase shift at 
large inputs as shown in Figure 6a. 

When Vds was increased from 3 V to 5 V and 10 V, the corresponding transition volt-
ages extracted from the linear extrapolation of Cgs-Vgs curve were also increased from 1.2 
V to 2.6 V and 6.2 V, respectively. The lower transition voltage at a relatively smaller drain 
voltage leads to the early onset of Cgs increasing, which causes the early significant output 
phase drop at a relatively small Vds when a large power is injected into the gate of the 
device. 

4. Conclusions 
High performance microwave RP based on a single GaN HEMT is demonstrated, 

with features of high power compression, tunable threshold power level, and a frequency-
insensitive property. Although additional power was dissipated, constant output power 
was achieved at large input power owing to the saturated output power of the HEMT RP, 
indicating a competitive advantage over diode-based RPs. In addition, adjustable Pth was 
presented and Pth could be easily tuned by adjusting drain voltage. The tunable Pth was 
well modeled and explained by transducer gain measurement results. The higher Pth was 
attributed to the wider gate voltage swing, which extended the linear region of the Pout-Pin 

Figure 6. (a) Phase shift versus Pin with different Vds; (b) small RF signal equivalent circuit for GaN
HEMT; (c) Cgs versus gate voltage.

A small RF signal equivalent circuit model of this GaN HEMT is shown in Figure 6b [43,44].
This model consisted of an input resistance (Ri), an input (Cgs), output (Cds) and feedback
(Cgd) capacitors, and a voltage controlled current source (gm·Vgsiexp(-jωτ)) where τwas
transconductance delay. The RF power source is modeled by a voltage source and an
internal impedance Zs = Rs. The output load is modeled by an admittance YL = GL.

The feedback capacitor Cgd could be ignored due to the fact that it had small value.
Therefore, the phase of output voltage could be computed as Equation (1):

∠Vout= arctan(−ωCgs(Rs+Ri)) + arctan
(
− ωCds

gds+GL

)
−ωτ. (1)

Since Cds (at fF level) is much smaller than the input capacitor Cgs, the phase of output
voltage could be further simplified as Equation (2):

∠Vout= arctan(−ωCgs(Rs+Ri)
)
−ωτ. (2)

Thus, the phase of output voltage could be regarded to be merely determined by the
Cgs. Cgs could be extracted by the small RF signal equivalent circuit model shown in the
dashed box in Figure 6b [44].

Figure 6c shows Cgs as a function of Vgs. For a given Vds, Cgs was unchanged around
Vgs = −1 V, which corresponds to a relatively low input power. However, on increasing the
input power, which could be interpreted as increasing the Vgs, a dramatically enhanced Cgs
was observed. The increase of Cgs would cause a decrease in the phase of output voltage
according to Equation (2), resulting in a significant drop in the phase shift at large inputs as
shown in Figure 6a.

When Vds was increased from 3 V to 5 V and 10 V, the corresponding transition
voltages extracted from the linear extrapolation of Cgs-Vgs curve were also increased from
1.2 V to 2.6 V and 6.2 V, respectively. The lower transition voltage at a relatively smaller
drain voltage leads to the early onset of Cgs increasing, which causes the early significant
output phase drop at a relatively small Vds when a large power is injected into the gate of
the device.

4. Conclusions

High performance microwave RP based on a single GaN HEMT is demonstrated,
with features of high power compression, tunable threshold power level, and a frequency-
insensitive property. Although additional power was dissipated, constant output power
was achieved at large input power owing to the saturated output power of the HEMT
RP, indicating a competitive advantage over diode-based RPs. In addition, adjustable Pth
was presented and Pth could be easily tuned by adjusting drain voltage. The tunable Pth
was well modeled and explained by transducer gain measurement results. The higher Pth
was attributed to the wider gate voltage swing, which extended the linear region of the
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Pout-Pin characteristics. Both Pth and the power compressions are frequency-independent,
indicating a good broadband property without matching circuits, which means the GaN
HEMT RP could be used to protect ADCs and sensitive receiver components at both low
and high frequencies. The phase shift of the GaN HEMT at high input power was measured
and analyzed. The occurrence of the phase shift was mainly caused by the nonlinearity
of the input capacitor Cgs at a large signal input. It was found that a higher drain voltage
would hinder the onset of the phase shift and reduce the extent of the phase shift.
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